A density functional theory study of uranium(VI) nitrate monoamide complexes.
نویسندگان
چکیده
Density functional theory calculations were performed on uranyl complexed with nitrate and monoamide ligands (L) [UO(2)(NO(3))(2)·2L]. The obtained results show that the complex stability is mainly governed by two factors: (i) the maximization of the polarizability of the coordinating ligand and (ii) the minimization of the steric hindrance effects. Furthermore, the electrostatic interaction between ligands and uranium(vi) was found to be a crucial parameter for the complex stability. These results pave the way to the definition of (quantitative) property/structure relationships for the in silico screening of monoamide ligands with improved extraction efficiency of uranium(vi) in nitrate acidic solution.
منابع مشابه
Aqueous coordination chemistry and photochemistry of uranyl(VI) oxalate revisited: a density functional theory study.
Using density functional theory (DFT) calculations, we revisited a classical problem of uranyl(VI) oxalate photochemical decomposition. Photoreactivities of uranyl(VI) oxalate complexes are found to correlate largely with ligand-structural arrangements. Importantly, the intramolecular photochemical reaction is inhibited when oxalate is bound to uranium exclusively in chelate binding mode. Previ...
متن کاملSpeciation and structural study of U(IV) and -(VI) in perchloric and nitric acid solutions.
In order to elucidate the uranium solution chemistry at the high HNO(3) concentrations typically employed for the reprocessing of spent nuclear fuels, speciation and complex structures of U(IV) and U(VI) are studied in aqueous HNO(3) solutions, as well as in HClO(4) solutions, by means of UV-visible-near-infrared and X-ray absorption spectroscopies and density functional theory calculations. In...
متن کاملThe Effect of Type and Concentration of Surfactant and Ligand on Uranium (VI) Cloud-Point Extraction (CPE) from Aqueous Solutions (Short Communication)
In this article cloud-point extraction (CPE) was used with chelating agent to extract uranium from aqueous solutions. The methodology used is based on the formation of metal complexes soluble in a micellar phase of surfactant. The metal ions complexes are then extracted into the surfactant-rich phase at a temperature above the cloud-point temperature. The effect of type of surfactants and ligan...
متن کاملSoil Humic Acid Decreases Biological Uranium(VI) Reduction by Shewanella putrefaciens CN32
Biological reduction of uranium(VI) by Shewanella putrefaciens CN32 was investigated in the presence of soil humic acid (SHA). Experiments were performed under resting cell conditions with uranyl acetate as the electron acceptor and sodium lactate as the electron donor in a NaHCO3 or PIPES/NaHCO3 buffer. SHA significantly decreased the final extent of U(VI) bioreduction (100% uranium bioreduced...
متن کاملMultiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments.
Microbiological reduction of soluble U(VI) to insoluble U(IV) has been proposed as a remediation strategy for uranium-contaminated groundwater. Nitrate is a common co-contaminant with uranium. Nitrate inhibited U(VI) reduction in acetate-amended aquifer sediments collected from a uranium-contaminated site in New Mexico. Once nitrate was depleted, both U(VI) and Fe(III) were reduced concurrently...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 13 43 شماره
صفحات -
تاریخ انتشار 2011